The Ultimate Vert Bio Challenge

Not all frogs jump alike – the evolution of landing in frogs

Well, at least they don’t land alike – some prefer a nose-dive style! A group of researchers led by Dr. Rick Essner, from the Southern Illinois University Edwardsville, have recorded the jumping styles of different frogs in slow-motion and found that some frogs, more specifically the ones belonging to the Leiopelmatidae family, don’t know how to land like most frogs. Interestingly, Leiopelmatidae is the basal-most living frog family, indicating frogs first learned how to jump, and only later in their evolutionary history did they develop a way to land that didn’t involve a head or belly flop. Here is a link to their paper.

The Leiopelmatidae:


The frogs we are accustomed to seeing, and that we used to chase when we were kids, have a typical jump that works like this: first there is a propulsion to get the body off ground, then half-way through, the body and limbs will flex in preparation for landing. This mid-air flexion is what prevents them from a head-first collision.

Screen Shot 2014-11-04 at 6.23.07 PM

All frogs (order Anura) can be divided in two main classifications, the basal-most Leiopelmatidae and all other frogs, Lalagobatrachia (Frost et al, 2006). These two groups diverged around 225 million years ago (Roelans and Bossuyt, 2005). The Leiopelmatidae were particularly interesting for this study because according to Dr. Essner they “retained central and behavioral features that are evolutionary informative”. Dr. Essner and his group already knew that these basal frogs swim differently than others. They do a trot-like rather than a kick-like swim. This trot-like style is characterized by asynchronous movement of the hindlimb, while in the kick-like one, frogs extend and flex both their hindlimbs together, which is what all other frogs do. That suggested to the researches that maybe there were other differences in how these frogs moved. So, they set out to test how they jumped and landed. They analyzed slow-motion video footage from five species, three basal leiopelmatidae, Ascaphus montanus, the Rocky Mountain tailed frog, Leiopelma pakeka and L. hochstetteri; and two lalagobatrachians, Bombina orientalis and Lithobates pipiens.


Amphibian Tree of Life, including caecilians, salamanders and all frogs. Not the first frog family is Leiopelmatidae. From

The Lalagobatrachia frogs they observed all had a similar jumping pattern where the “aerial phase [is] characterized by mid-air body and limb rotation in preparation for landing. […] Limb recovery involves protraction, adduction, and extension of the forelimbs, placing them in position to absorb impact forces”. We can call the lalagobatrachians derived frogs, a reference to their more recent placement in the Anuran phylogeny.  The Leiopelamtidae, however, didn’t come programed to flex their hindlimb mid-air, and therefore, land in a belly-flop, abdomen (and sometimes nose) first, and skid to a stop. Like in this video from their study:

Poor guy, but I don’t blame you if you replay that video a couple of times.

Such a simple maneuver, you would think, to flex you limbs before you have to skid your way through a stop. Maybe the art of jumping and landing had evolved together. Apparently not in frogs. The fact that the most basal lineages can’t perform such maneuver indicates that frogs first evolved how to jump, and the landing skills were only developed much later on, in the ancestrals of the lalagobatrachian frogs. According to the authors: “The switch to lalagobatrachian landing and swimming behavior appears to have involved a simple evolutionary change in the timing of limb muscle motor patterns, shifting the onset of hindlimb flexors to an earlier point in the stride cycle.” There seems to be no difference in the morphology of these frogs that could influence how they land, and what makes a difference is simply the timing of their limbs flexion.

“All else being equal, if A. montanus shifted the onset of recovery so that flexion began at mid-flight it would land on its limbs like other frogs.” – Essner et al.

It is worth mentioning that these basal frogs are tiny, as you can see in the picture below where the for is next to a dime. Their smaller size probably helps in their rough landing. They also have large, shield-shaped cartilages, which could soften the uncontrolled landing.

Ascaphus montanus next to a dime. Photo from

Ascaphus montanus next to a dime. Photo from

By now you could be thinking: how did jumping evolve, and is there any relation of how these frogs differ in how they land to primitive terrestrial fishes, or did jumping evolve independently more than once? Well, we don’t know it, but Dr. Essner and his collaborators are currently investigating how jumping involved in anurans.

A very important point to be taken from their work is that when looking at morphological traits to understand evolutionary history, we tend to ignore behavioral aspects that may involve multiple ways of using the same available structures. This paper proves that to make an engine work, it takes much more than just having the right tools.

For more information, read the article: Essner, Richard L, Daniel J Suffian, Phillip J Bishop, and Stephen M Reilly. 2010. “Landing in Basal Frogs: Evidence of Saltational Patterns in the Evolution of Anuran Locomotion.” Naturwissenschaften 97 (10): 935–39. doi:10.1007/s00114-010-0697-4.

Photo courtesy of Dr. Essner.

Photo courtesy of Dr. Essner.

Mastering scariness: the mechanisms behind hooding and growling in cobras

Snake charming is a very popular and ancient performance in Africa and Asia, which takes advantage of the natural defensive behavior of cobras of forming a hood.

Snake charming is a very popular and ancient performance found in Africa and Asia, in which flute players takes advantage of the natural defensive behavior of cobras of forming a hood. Picture from:

The second Ultimate Vert Bio Challenge is a warm up for Halloween, about one of the most terrifying, albeit amazing, creatures in nature: Cobras! These reptiles found their place in the animal kingdom hall of fame due to snake charming, a very ancient and popular performance in African and Asian countries,  in which a flute player pretends to hypnotize a cobra. What snake charmers actually do is take advantage of the defensive behavior called hooding, which cobras naturally perform by standing vertically, flaring the neck laterally and compressing it dorsoventrally. But, precisely, what adaptations in the skeleton and musculature of the cobras allow them to perform such a scarring defensive hooding display? When comparing X-rays of king cobras displaying hooding to cobras in a relaxed state, one is able to see how, in order to flare the hood, these snakes can rotate the ribs in two planes, frontal and transverse. The rotating movement of the ribs allow these bones to protract (move towards the head), and elevate (flatten and move dorsally), anchoring the muscles associated to the hood. Rib rotation is initiated by contraction of two muscles in the head, followed by contraction of intercostal muscles to support the protracted and elevated ribs. How long cobras can keep up with the defensive display depends on the amount of visual stimuli, or how threatened they feel, as well as intra- and inter- specific variation. However, there is evidence from laboratory observations that they are able to maintain the hood flared for at least 10 min, and up to 80 min!

Young BA, Kardong KV. 2010. The functional morphology of hooding in cobras.J Exp Biol. 213, 1521-8.

Young BA, Kardong KV. 2010. The functional morphology of hooding in cobras.J Exp Biol. 213, 1521-8.

I wouldn't hold a king cobra for a million dollars...wait, maybe for that money I would..but I definitely wouldn't smile while doing it like this guy does.  Picture from: http-//

I wouldn’t hold a king cobra for a million dollars…wait, maybe for that money I would..but I definitely wouldn’t smile while doing it like this guy does. Picture from: http-//

If you think hooding is enough to make cobras one of the most frightful creatures out there, you probably haven’t seen a video of a cobra hooding and growling at the same time. Yes, growling. Super laud nasty scary growling. Check out the video bellow:

Most snakes are able to produce hissing-like vocalizations at a frequency of 7,500 Hz, whereas cobras’ vocalizations lie at much lower frequencies, around 700 Hz, which is what characterizes them as growlers. The production of low frequency sound is possible due to the presence of a structure called tracheal diverticula. These are sacs associated to the trachea, which work as low frequency resonating chambers for the air flushed down the respiratory passageway. Interestingly, the only snake that has tracheal diverticula and is also able to growl, is the cobra’s favorite snack, the mangrove rat snake. This is considered to be a case of vocal Batesian mimicry, in which the mangrove rat snake mimics the vocalization of the more threatening cobras. The venom of mangrove rat snake is not toxic to humans, whereas cobras can inject up to 7 ml of venom in a single bite, and can kill a person in less than half an hour. We’re aware that cobras are predated by honey badgers (because they just don’t care), but I wonder what was the actual evolutive pressure through time to select for such a nasty defensive apparatus! Any thoughts?

Just to prove that King cobras can also look cute! Picture from:

Just to prove that King cobras can also look cute! Picture from:×200.jpg


Zombies of the ocean: the mechanism behind shark tonic immobility

Shark in tonic immobility state.

Shark in tonic immobility state.

My true passion in science is ecology and evolution of host-parasite systems. However,vertebrate evolution was what really caught my attention when I first started to study biology. Just based on the number of fans the movie Jurassic Park has, I’m sure I’m not alone with my fascination by vertebrate biology and evolution. Luckily, I got the chance to TA the Vertebrate Biology Lab at UMSL, which is an anatomy lab that I try to teach in an evolutionary, ecological and behavioral context. This Fall, I’ve decided to spice things up, and proposed to the students what I called the “Ultimate Vert Bio Challenge”. The idea here is to get our brains around some of the coolest, but, complex and most times under studied, facts involving vertebrates. In this first challenge, students had to try to explain the mechanism involved on shark tonic immobility (TI), a very popular topic referred to as ‘shark hypnosis’ or ‘zombie sharks’ in the media, and recently featured on Discovery Channel’s shark week (see video bellow).

Tonic immobility is assumed to be a behavioral strategy of preys – but, what does it mean when a predator presents the same type of behavior? Figure from the book Epossumondas Plays Possum, by Salley and Stevens.

Tonic immobility is assumed to be a behavioral strategy of preys – but, what does it mean when a predator presents the same type of behavior? Figure from the book Epossumondas Plays Possum, by Salley and Stevens.

TI is a behavioral strategy found in several species of vertebrates, such as  rabbits, chickens, hummingbirds, opossums, lizards, humans, and even in invertebrates, such as the red-flour beetle. In terrestrial vertebrates, TI is characterized as an unlearned and reversible behavior, in which the animal involuntarily enters a dead-like state characterized by motor inhibition. It is a behavioral display commonly associated with stress and fear responses to predators – hence a very widespread strategy among prey species. If TI is a response to predation, why the heck sharks, one of the sea’s top predators, can also be induced into a TI state? The TI mechanism is somewhat understood in terrestrial vertebrates: it involves activity of the hypothalamic-adrenal-axis, production of corticosteroids and muscle contraction. In contrast, in sharks and other elasmobranchs, TI is characterized by muscle relaxation. It is known that sharks experience physiological stress when in TI, due to high levels of carbon dioxide in the blood caused by inefficient ventilation while immobilized and turned upside down. However, the precise mechanism of TI in sharks has yet to be determined.

To get some insights on the possible mechanistic pathway of this phenomena, I got in touch with Dr Stephen Kajiura, the PI of the Elasmobranch Research Laboratory, at the Florida Atlantic University. Dr Kajiura mentioned that the consensus is that we just don’t know what the precise mechanism is. When I asked him to speculate what he believes the mechanism could be, he stated: “Since it (TI) works when the animal is flipped upside down, I would suspect that the mode of action is initiated by the vestibular system.  Another option is that the position causes blood flow to the brain to be compromised causing the animal to pass out.  In the wild, these animals are only likely to be flipped upside-down when being mated and it would probably be adaptive to be somewhat passive during that procedure to avoid being damaged by the mate’s teeth.” Another fact frequently pictured in shark TI videos are divers rubbing the animal’s snout with metal gloves, to stimulate the shark’s Ampullae of Lorenzini (AOL), an electro-receptive sensory system. This often misleads us to believe that AOL disruption is somehow the mechanism behind TI. Dr Kajiura explains that “it is possible to flip the sharks in the absence of any metal glove and get the same result.  AOL detect changes in electric fields so the shark may be momentarily confused by the metal glove, which might help to get it flipped upside-down, but remaining in TI is accomplished without any metal.  Again, we flip sharks with just our bare hands and get the same result so AOL are not likely the mechanism“. What is your hypothesis about the mechanism responsible for turning sharks into zombies?

Thanks to Dr Stephen Kajiura for kindly answering my questions so promptly!!